
1.
Wadhawan, V. K. Introduction to Ferroic Materials (CRC Press, 2000).
2.
Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 2009).
3.
Seul, M. & Andelman, D. Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995).
4.
Farztdinov, M. M. Structure of antiferromagnets. Sov. Phys. Uspekhi 7, 855–876 (1965).
5.
Fiebig, M., Fröhlich, D., Leute, S. & Pisarev, R. V. Second harmonic spectroscopy and control of domain size in antiferromagnetic YMnO3. J. Appl. Phys. 83, 6560–6562 (1998).
6.
Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).
7.
Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys.: Condens. Matter 25, 363201 (2013).
8.
Rougemaille, N. & Canals, B. Cooperative magnetic phenomena in artificial spin systems: spin liquids, Coulomb phase and fragmentation of magnetism – a colloquium. Eur. Phys. J. B. 92, 62 (2019).
9.
Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).
10.
Kittel, C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541–583 (1949).
11.
Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D. Appl. Phys. 50, 363001 (2017).
12.
Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).
13.
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
14.
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
15.
Gomonay, H. V. & Loktev, V. M. Shape-induced phenomena in finite-size antiferromagnets. Phys. Rev. B. 75, 174439 (2007).
16.
Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J. & Fiebig, M. Poling of an artificial magneto-toroidal crystal. Nat. Nanotechnol. 14, 141–144 (2019).
17.
Luttinger, J. M. & Tisza, L. Theory of dipole interaction in crystals. Phys. Rev. 70, 954–964 (1946).
18.
Kraemer, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science 336, 1416–1419 (2012).
19.
Alkadour, B., Mercer, J. I., Whitehead, J. P., Southern, B. W. & van Lierop, J. Dipolar ferromagnetism in three-dimensional superlattices of nanoparticles. Phys. Rev. B. 95, 214407 (2017).
20.
Sendetskyi, O. et al. Continuous magnetic phase transition in artificial square ice. Phys. Rev. B. 99, 214430 (2019).
21.
Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).
22.
Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).
23.
Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).
24.
Farhan, A. et al. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat. Phys. 9, 375–382 (2013).
25.
Kapaklis, V. et al. Thermal fluctuations in artificial spin ice. Nat. Nanotechnol. 9, 514–519 (2014).
26.
Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).
27.
Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).
28.
Gliga, S. et al. Emergent dynamic chirality in a thermally driven artificial spin ratchet. Nat. Mater. 16, 1106–1111 (2017).
29.
Loreto, R. P. et al. Emergence and mobility of monopoles in a unidirectional arrangement of magnetic nanoislands. Nanotechnology 26, 295303 (2015).
30.
Arnalds, U. B. et al. A new look on the two-dimensional Ising model: thermal artificial spins. N. J. Phys. 18, 023008 (2016).
31.
Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).
32.
Nisoli, C. On thermalization of magnetic nano-arrays at fabrication. N. J. Phys. 14, 035017 (2012).
33.
Mól, L. A. et al. Magnetic monopole and string excitations in two-dimensional spin ice. J. Appl. Phys. 106, 063913 (2009).
34.
Bortz, A., Kalos, M. & Lebowitz, J. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Computational Phys. 17, 10–18 (1975).