Relation between microscopic interactions and macroscopic properties in ferroics

  • 1.

    Wadhawan, V. K. Introduction to Ferroic Materials (CRC Press, 2000).

  • 2.

    Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 2009).

  • 3.

    Seul, M. & Andelman, D. Domain shapes and patterns: the phenomenology of modulated phases. Science 267, 476–483 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Farztdinov, M. M. Structure of antiferromagnets. Sov. Phys. Uspekhi 7, 855–876 (1965).

    Article 

    Google Scholar
     

  • 5.

    Fiebig, M., Fröhlich, D., Leute, S. & Pisarev, R. V. Second harmonic spectroscopy and control of domain size in antiferromagnetic YMnO3. J. Appl. Phys. 83, 6560–6562 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys.: Condens. Matter 25, 363201 (2013).

    CAS 

    Google Scholar
     

  • 8.

    Rougemaille, N. & Canals, B. Cooperative magnetic phenomena in artificial spin systems: spin liquids, Coulomb phase and fragmentation of magnetism – a colloquium. Eur. Phys. J. B. 92, 62 (2019).

    Article 

    Google Scholar
     

  • 9.

    Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).

    Article 

    Google Scholar
     

  • 10.

    Kittel, C. Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541–583 (1949).

    Article 

    Google Scholar
     

  • 11.

    Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D. Appl. Phys. 50, 363001 (2017).

    Article 

    Google Scholar
     

  • 12.

    Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Gomonay, H. V. & Loktev, V. M. Shape-induced phenomena in finite-size antiferromagnets. Phys. Rev. B. 75, 174439 (2007).

    Article 

    Google Scholar
     

  • 16.

    Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J. & Fiebig, M. Poling of an artificial magneto-toroidal crystal. Nat. Nanotechnol. 14, 141–144 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Luttinger, J. M. & Tisza, L. Theory of dipole interaction in crystals. Phys. Rev. 70, 954–964 (1946).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kraemer, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science 336, 1416–1419 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Alkadour, B., Mercer, J. I., Whitehead, J. P., Southern, B. W. & van Lierop, J. Dipolar ferromagnetism in three-dimensional superlattices of nanoparticles. Phys. Rev. B. 95, 214407 (2017).

    Article 

    Google Scholar
     

  • 20.

    Sendetskyi, O. et al. Continuous magnetic phase transition in artificial square ice. Phys. Rev. B. 99, 214430 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Farhan, A. et al. Exploring hyper-cubic energy landscapes in thermally active finite artificial spin-ice systems. Nat. Phys. 9, 375–382 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Kapaklis, V. et al. Thermal fluctuations in artificial spin ice. Nat. Nanotechnol. 9, 514–519 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Gliga, S. et al. Emergent dynamic chirality in a thermally driven artificial spin ratchet. Nat. Mater. 16, 1106–1111 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Loreto, R. P. et al. Emergence and mobility of monopoles in a unidirectional arrangement of magnetic nanoislands. Nanotechnology 26, 295303 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Arnalds, U. B. et al. A new look on the two-dimensional Ising model: thermal artificial spins. N. J. Phys. 18, 023008 (2016).

    Article 

    Google Scholar
     

  • 31.

    Morgan, J. P., Stein, A., Langridge, S. & Marrows, C. H. Thermal ground-state ordering and elementary excitations in artificial magnetic square ice. Nat. Phys. 7, 75–79 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Nisoli, C. On thermalization of magnetic nano-arrays at fabrication. N. J. Phys. 14, 035017 (2012).

    Article 

    Google Scholar
     

  • 33.

    Mól, L. A. et al. Magnetic monopole and string excitations in two-dimensional spin ice. J. Appl. Phys. 106, 063913 (2009).

    Article 

    Google Scholar
     

  • 34.

    Bortz, A., Kalos, M. & Lebowitz, J. A new algorithm for Monte Carlo simulation of Ising spin systems. J. Computational Phys. 17, 10–18 (1975).

    Article 

    Google Scholar